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Abstract—Emerging high performance computing (HPC)
systems are expected to be deployed with an unprecedented
level of complexity due to a deep system memory and storage
hierarchy. Efficient and scalable methods of data management
and movement through the multi-level storage hierarchy of up-
coming HPC systems will be critical for scientific applications at
exascale. In this paper, we propose in locus analysis that allows
registering user-defined functions (UDFs) and running those
functions automatically while the data is moving between levels
of a storage hierarchy. We implement this analysis in the data
path approach in our object-centric data management system,
called Proactive Data Containers (PDC). The transparent
invocation of analysis functions as part of PDC object mapping
is an optimized approach to minimize latency to access data as
it moves within the storage hierarchy. Because a user defined
analysis or transform function will be invoked automatically by
the PDC runtime, the user simply registers their functions for
PDC to identify the function name as well as the required
list of actual parameters. To demonstrate the validity and
flexibility of this analysis approach, we have implemented
several scientific analysis kernels to compare against other HPC
analysis-oriented approaches.

I. INTRODUCTION

The computing trend in high-performance computing

(HPC) that has gained significance is the application of in
situ processing for data analysis1. In situ processing in recent

years has been shown to be advantageous in many domains.

Often, as was the case in the initial forays into computer

animations, the amount of data that can be generated by

a computer can easily outstrip the ability of the system to

store that data. Similarly, long running simulations of real

world phenomena can take large amounts of computer time

and storage. To better optimize computing resources and

lower costs, data sampling of such simulations can provide

users with timely feedback to allow human intervention

to restart or re-calibrate a simulation gone wrong. In situ

processing within HPC has been used for reducing I/O

latency, data size, and analyzing data while it resides in the

memory of compute nodes. For instance, in situ processing

has been used to gather descriptive statistics for future data

indexing and querying (see DIRAC [1]); or to utilize data

sampling for graphical display. Additional examples include

1The earliest in situ applications were from the 1960’s, e.g. Zajac, direct-
to-film animations.

data compression [2], I/O systems such as DataSpaces [3],

FlexPath [4], and Glean [5] support in situ analysis while the

application data is in memory. Among these, DataSpaces and

FlexPath are integrated into the ADIOS framework [6] for

performing I/O and data analytics. However, user involve-

ment is needed in these frameworks either by modifying

simulation codes to infuse the analysis functions or by

scheduling analysis codes to run concurrently with the

simulation. ArrayUDF [7] executes user-defined functions

(UDF) on array data structures using the stencil abstraction.

ArrayUDF has been primarily designed for post-processing

analysis and execution of in situ tasks but requires user

involvement in allocating resources.

In this paper, we propose an automatic analysis mech-

anism called in locus analysis, which expands on the

concept of in situ processing. A ‘locus’ refers to a storage

location in a multi-layer storage hierarchy, such as memory

or storage on a compute node, or storage on burst buffer,

etc. Automating the process of expressing arbitrary analysis

functions on data while the data is in flight between different

storage layers and running the functions without any user

involvement are challenging tasks. Towards this overarching

goal, we provide users with a capability to register analysis

functions for a system to schedule running the functions

while the data is in flight. We provide analysis function

registration APIs and execution semantics on scheduling to

run those functions.

We have implemented the in locus analysis framework

in our recently developed Proactive Data Containers (PDC)

framework [8]–[11]. PDC provides an object-centric abstrac-

tion for data. It allows transparent and asynchronous data

movement across deep storage hierarchy using user-level

computation resources. As HPC systems are equipped with

multi-level storage hierarchy, moving the data transparently

across these levels removes the burden of data management

on users. PDC uses a client-server architecture and the object

management that runs data management services in user

space to invoke user defined functions on clients or servers,

which is nearest to the data of interest. This automated

in locus analysis approach frees the application authors to

concentrate on developing their analysis codes rather than

on the mechanics of accessing data and scheduling analysis

while the data of interest is moving through the system.
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The principal software components of the PDC framework

include a metadata service to manipulate (create, update,

and delete) rich sets of metadata and provenance of data

objects, along with a data service that moves the data within

the storage hierarchy. More details of the PDC system can

be found in [8] and [10]. By providing the APIs to allow

users to register analysis functions on data objects and to

express when to perform analysis, one can easily express

the resources to execute analysis functions and also define a

workflow of data transformations. The PDC system uses an

integrated approach in which the user-provided input gives

guidance for the execution of analysis in the data path to be

optimized. The generated results are automatically managed

as objects and handles are provided back to the user. The

metadata related to analysis output is subsequently stored

back in the original data objects to capture provenance.

In summary, the contributions of this work are:

1) Introduction of the concept of in locus analysis in

the data path for automated execution of analysis

functions while the data is moving between storage

layers.

2) Definition of an API for applications to register anal-

ysis and transformations on data objects;

3) Design and development of an analysis framework in

the PDC object-centric data management system.

The remainder of this paper is organized as follows.

Because we used the PDC framework for implementing in

locus analysis, Section II provides the basics of the PDC

system. We then present details of our proposed in locus

analysis and transformation framework in Section III. We

evaluate the analysis framework in Section V using various

analysis and transformation functions at different scales. We

conclude the paper in Section VII with a brief discussion of

future work.

II. BACKGROUND: PROACTIVE DATA CONTAINERS

In this section, we provide a more detailed overview of

the PDC framework and its data management interface.

Proactive Data Containers (PDC) [8]–[11] provides trans-

parent and asynchronous management of data movement

in hierarchical storage systems. The principal functional

components of PDC as shown in Figure 1, are a collection

of distributed clients which interact with a collection of

servers that provide the data and metadata management

services. This figure describes compute nodes and burst
buffer nodes; these are similar but distinguished by the

fact that the compute nodes do not have access to the

burst-buffer hardware. In most other respects, nodes are

simply a collection of some number of physical CPUs and

will either run a PDC server instance or a PDC client

application. Servers and client applications all run as user

processes and are started and run independently. Servers

subdivide the data and meta-data management tasks and

communicate between themselves and clients utilizing the

Figure 1: A simplified representation of a pre-exascale

system with multi-tier storage [8]. PDC running services are

highlighted in blue. In that model, PDC services are either

co-located within the same node or eventually distributed

over remote burst buffer nodes.

Mercury [12] remote procedure call (RPC) library. As a

collection this coordinated runtime environment provides

PDC with efficient, asynchronous data movement operations,

while simultaneously enabling in-transit data transforms and

in locus analysis operations.

Object-centric abstractions in PDC are the data constructs

of Containers, Objects, and Regions, all of which have meta-

data attributes or Properties. A PDC Object is the generic

term used to describe a byte stream and can represent either

a data variable or an application object.

A Container is a collection of PDC Objects which share

similar user-defined attributes. An example of this concep-

tual usage might be that all data variables produced by a

simulation or experiment would logically be added to single

PDC container. Objects are managed globally by data and

metadata services and can be placed at any level of the

storage hierarchy (e.g., NVRAM, burst-buffer, disk, etc.).

This flexible approach allows data, objects, and containers

to be spread over different types of storage media or storage
loci, which in turn can be thought of as differing levels of

data caching. Regions are the lowest level containers in PDC

and hold user data, associated metadata, and are the basic

units of management for data movement operations within

PDC.

Traditional I/O libraries include explicit data movement

operations such as read and write functions. PDC introduces

an alternative concept of object mapping to define object

relationships which when used in concert with a PDC data

consistency framework, enable implicit IO operations, e.g. if

a mapping between region A and region B is defined, then

when modifications to A are made, those changes will be

reflected automatically into B as a consequence of a region

unlock operation (Section II-A).

A. Object Mapping and Data Consistency

An object mapping primitive allows users to define an

association between a region within an application’s memory

and that of a similar region within a global PDC object.

Mapping operations are defined on a per-region basis and

can be thought of as a publish and subscribe mechanism so

that once a mapping is established and a region is published,
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data movement can occur to keep updates globally visible.

When defining a mapping, an application provides property

information (metadata) about the mapped region. This is the

key information which allows PDC services to keep track of

all mappings and prevent potential overlaps and conflicts.

To keep data consistency between the application’s mem-

ory and that of the global PDC object, Read and Write

locking semantics have been defined for PDC objects (with

a region granularity to allow multiple regions within an

object to be concurrently updated). Assuming the mapping

from memory to object has already been established, a user

will express the intent to read or modify the application’s

memory region by issuing a lock request. Acquiring a read

lock enables the client view of region data to be updated

from the global version if modifications have been made.

The process of releasing a lock re-enables the global object

to be updated with data from the client. Data movement is

scheduled and will occur asynchronously and transparently

to the user application.

III. IN LOCUS ANALYSIS AND TRANSFORMATIONS IN

DATA PATH

The approach that PDC has initially adopted is to utilize

the locus information in PDC object internals to determine

where computation should take place. Computation, in the

form of user-defined functions is enabled by registering

functions with the runtime system. These registration APIs

further identify which PDC objects and regions will be

utilized as inputs and outputs when user-defined functions

are invoked. In reality, the registrations provide the necessary

metadata information to the PDC runtime and allow the

identified functions to be invoked and run on nodes which

are physically close to the data. This approach is intended

to minimize data movement and to provide a level of

asynchronous execution when coupled with PDC object

mapping and the region update methodology that has been

discussed previously (See Section II-A).

typedef enum {
UNKNOWN =0,
SERVER_MEMORY =1,
CLIENT_MEMORY =2,
FLASH =3,
DISK =4,
FILESYSTEM =5,
TAPE =6

} PDC_loci;

Figure 2: PDC Locus values

PDC defines locus values as shown in figure 2. At

present, not all definitions are utilized. In the context of

the current discussion however, the SERVER_MEMORY and

CLIENT_MEMORY locus values provide guidance as to the

locale to run a registered analysis function. Because data is

Application Memory

Burst-buffer

Disk

Mapping +
Transformation

Mapping +
Transformation

Figure 3: Abstracted data can reside at any level of the

storage hierarchy [8]. While the data objects are mapped

between different storage layers and are in movement, if

transform or analysis functions have been registered for

those objects, the defined data transformations or analysis

functions will be executed at the designated locus. These

transformations and analysis are user-defined functions and

are executed asynchronously by the PDC runtime system.

allowed to migrate somewhat autonomously, analysis regis-

tration metadata is copied and utilized by both the SERVER
and CLIENT runtime systems. As the PDC platform ma-

tures, we envisage both user controlled data migration,

e.g. from SERVER_MEMORY to CLIENT_MEMORY or vice-

versa to be enabled by introducing a Redistribute API. Some

machine learning algorithms might also be introduced to

predict data movement as a function of computation and

thus pre-fetch input data into low latency storage using these

same redistribution interfaces.

To achieve maximum benefit, analysis functions need to

be applied at the locus where data currently resides (see

figure 3). PDC is coded in ’C’ and thus presents users with

a native API which is consistent with that language, i.e. the

storage order for arrays is row-major and user programs and

analysis functions are generally expressed in this language.

PDC transforms and analysis registration APIs are defined

as ’C’ APIs. While PDC transforms and PDC analysis

functions are similar, the intent of each API is distinct.

The majority of PDC transforms should be packaged as a

standard library to affect automatic data operations such as

array transpose operations or simple datatype conversions. In

addition to prepackaged transforms, user-defined functions
can of course be utilized as we show in one specific example

in which the Blosc [13] compression library is employed to

affect higher performance data movement and data storage.

A final differentiation factor between analysis and trans-

forms is the idea that a PDC transform produces state

changes, (e.g. compressed, transposed, converted datatype,

etc), and that transform outputs are intended as temporary

containers in a potential chain of computation or storage
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...
numparticles = NPARTICLES;
dims[0] = numparticles;
x = (float *)malloc(numparticles*sizeof(float));
...
mysize[0] = numparticles;
obj_xx = PDCobj_create_mpi(cont_id,
"obj-var-xx", obj_prop_xx, 0, MPI_COMM_WORLD);
...
region_x = PDCregion_create(ndim, offset, mysize);
...
region_xx = PDCregion_create(ndim,

offset_remote, mysize);
...
/* Register COMPRESSION function on outgoing data */
PDCbuf_map_transform_register("pdc_transform_compress",

&x[0], region_x, obj_xx, region_xx,
0, INCR_STATE, DATA_OUT);

/* Register UN-Compress on server incoming data */
PDCbuf_map_transform_register("pdc_transform_decompress",

NULL, region_x, obj_xx, region_xx,
1, DECR_STATE, DATA_IN);

...

Figure 4: Register PDC Transforms

operations. A common PDC example might be the coupling

of a transpose operation to take native row-ordered data and

output column-order in order to invoke a FORTRAN based

analysis function. In the context of staging these buffers to

persistent storage, the temporary nature of this data needs

to be recorded as a new state along with the size meta-data

and an associated registered transform to allow subsequent

restoration of the data for application use.

A. Enabling Analysis and Transform Relocation

Analysis and transform registration APIs define the de-

sired function entry points symbolically rather than as a

native pointer to function. This mechanism enables the actual

function resolution and loading to be delayed until the user

defined function is required. This dynamic loading capability

allows functions to be executed either within the client

program or by the PDC server as part of data movement

operations, e.g. PDC buffer or region mapping, or even both

client and server as might be required in a multistep data

transform.

Analysis and transform function dynamic loading by a

client or server, is accomplished by utilizing the dlopen
and dlsym functions to resolve the desired functions from

shared libraries or from the application itself. We have

implemented default library names which are searched

to resolve the desired function name or alternately the

function naming syntax allows either a DLL or exe-

cutable name to be specified directly by the user, e.g.

functionName[:libraryName].

Simple code examples will illustrate a few details

of the PDC transform and analysis APIs. In figure 4

PDCbuf_map_transform_register(), the program-

mer expresses not only the function to invoke, but the con-

ditions under which the call to the transform is made. In the

...
obj1 = PDCobj_create_mpi(cont_id, "obj-var-array1",
obj1_prop, 0, comm);
...
obj2 = PDCobj_create_mpi(cont_id, "obj-var-result1",
obj2_prop, 0, comm);

// create regions
r1 = PDCregion_create(2, offset0, myTestArray_dims);
r2 = PDCregion_create(2, offset0, myTestArray_dims);

input1_iter = PDCobj_data_iter_create(obj1, r1);
result1_iter = PDCobj_data_iter_create(obj2, r2);

PDCobj_analysis_register(
"arrayudf_stencils:arrayudf_example",
input1_iter, result1_iter);

PDCbuf_obj_map(myTestArray, PDC_FLOAT,
r1, obj1, r2);

Figure 5: Register PDC Analysis

first registration call, the last three input arguments provide

a state, state transition action, and relative location. We

understand from the API name, that the desired function will

occur as part of the buf map operation and further, that on

the outgoing side of a data transfer (in this case, the client),

the function will be called and upon successful completion

will increment the internal state of the data. Secondly, there

is a matching call to pdc_transform_decompress()
on the receiving (server) side of the map operation. If that

completes successfully, the data state is decremented. This

state transition mechanism allows multiple transforms within

a single data movement operation which can obviously be

ordered by matching the transform with the data state. In

this example, data is compressed on the client, then sent to

the server where it is uncompressed.

The second example (figure 5) introduces

an API that we have not yet introduced. The

PDCobj_data_iter_create() call returns a PDC

identifier that is associated with a data iterator. A PDC

iterator is similar to data iterators in other languages in

that it provides an abstraction to allow multiple calls to

PDCobj_data_getNextBlock() to return successive

slices of data for use in the defined analysis functions.

This abstraction attempts to limit the amount of data

copying that might otherwise be necessary. In our PDC

implementation, the basic iterator form returns a slice of

data which contains one dimension fewer than the object

region to which it refers. Example: if a region has 2

dimensions, then the iterator will return a 1D data slice

(rows or columns depending on storage order); if the

referenced region has 3 dimensions, then our iterator will

return a 2D plane of data having the same dimensions as

the original rows and columns. Another important point

with regards to the PDC data iterator is the fact that we

generally return data as contiguous data slices. This enables

users to code high-performance algorithms which can take
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advantage of compiler technology to produce vectorized

code and/or to apply other optimization techniques that are

currently available. At a minimum, the approach is meant to

be hardware cache friendly while maintaining a simplified

programming approach. We will look at example stencil

applications and some performance comparisons later in

this paper (section V).

B. A Simple PDC Analysis Example

With the registration process of a PDC analysis functions

having been introduced, we can examine the various ele-

ments of coding a stencil analysis application for use in a

benchmarking exercise.

In this endeavor, we borrowed the basic algorithms that

are provided as the example application codes described in

the ArrayUDF project papers. They provide a base imple-

mentation and the series of benchmarks against which we

were able to validate our PDC results for similar analysis

calculations. Additionally, having a central focus on user

defined functions (UDFs) as the vehicle for scientific anal-

ysis provided an interesting match to the challenge of how

to incorporate analysis and automated data transformations

into an in locus computational design that is enabled within

PDC. It differs significantly from PDC however, in that

ArrayUDF applications are MPI based parallel applications.

The programming environment provides C++ classes to

address the data management tasks such as the reading

and writing of parallel HDF5 files, while giving users

the ability to express complex algorithms using structural

locality. Access to HDF5 file data is relatively transparent,

but beyond reading and writing of file data there is no

additional data movement, e.g. between a client and server;

nor is ArrayUDF an embedded part of a more general

runtime environment.

We can see from Figures 6 and 7, that like ArrayUDF, it

is not difficult to construct stencil algorithms in PDC which

perform fairly efficiently. Each of the examples described

the following sections are run on one or more data servers

as the result of an object mapping update operation. As a

result, these analysis functions are run asychronously on a

PDC server once the input array has been filled by reading

an HDF5 input file and followed by a PDC write unlock

operation.

The stencil construction at the heart of the moving average

of a time series benchmark example, is integrated into a loop

construct and is invoked N times (N being the size of the

3rd dimension and representing the historical information

for each geographic location in the survey). In the CoRTAD

example, the version 4 sectional map of the database has

an overall size of 1522 x 540 x 540, thus producing a

loop of 1522 iterations. Initialization of the stencil values

is one edge condition that must be taken care of. In this

example, the first plane returned by getNextBlock()
is replicated 3 times into the stencil. For each loop, the

/* PDC analysis entrypoint:
* This wrapper calls the CoRTAD running average function
* on each PDC array slice as returned from the
* PDCobj_data_getNextBlock();
*
* We treat each 2D array slice as a contiguous vector
* which is then presented as a series of 4 historical
* datapoints. In other words, this is a PDC version
* of a stencil implementation.
*/
size_t neon_stencil(pdcid_t iterIn, pdcid_t iterOut,

iterator_cbs_t *cbs)
{

short *dataIn = NULL;
short *stencil[4] = {NULL, NULL, NULL, NULL};

float *dataOut = NULL;
size_t dimsIn[3] = {0,};
size_t dimsOut[3] = {0,};
size_t k, blockLengthOut, blockLengthIn;
size_t number_of_slices;
size_t result = 0;
...
number_of_slices = (*cbs->getSliceCount)(iterOut);
...
if ((blockLengthIn = (*cbss->getNextBlock)(

iterIn, (void **)&dataIn, dimsIn)) == 0)
printf("neon_stencil: Empty Input!\n");

else {
stencil[0] = stencil[1] =
stencil[2] = stencil[3] = dataIn;
for (k=0; k< number_of_slices; k++) {

if ((blockLengthOut = (*cbs->getNextBlock)(
iterOut, (void **)&dataOut, dimsOut)) >

0) {
if (cortad_avg_func(stencil, dataOut,

blockLengthIn) == 0) {
/* move stencil values */
stencil[0] = stencil[1];
stencil[1] = stencil[2];
stencil[2] = stencil[3];

}
/* Get the next data block and insert
* it into the stencil
*/
blockLengthIn = (*cbs->getNextBlock)(

iterIn, (void **)&dataIn, NULL);
stencil[3] = dataIn;

}
}

}

Figure 6: PDC Analysis Loop

stencil entries are moved by one position with the last

value being replaced by the data pointer returned from

getNextBlock().

IV. EXPERIMENTAL SETUP

The evaluation of the PDC analysis infrastructure was

accomplished in two steps. The first step was to utilize

small HDF5 datasets to validate the PDC implementation

of the analysis algorithms against the results generated by

ArrayUDF for the same problems on the same datasets.

This validation step was accomplished on a generic Linux

workstation consisting of four i5-3570 cores with a total

of 16GB of main memory. Subsequent to that correctness

validation, an initial set of performance comparisons at this

small scale was done.

77



/* -------------------------------------------------
* ArrayUDF:: neon/ running average application
* For each point, create the average of the current
* point value with the 3 previous values.
*
inline float myfunc1(const SDSArrayCell<float> &c) {

return (c(0,0,0)+c(-1,0,0)+c(-2,0, 0)+c(-3,0,0))/4;
}
*/
/* -------------------------------------------------
* Here is the PDC version that is called by the
* PDC Analysis loop (see the previous figure)
*/
size_t cortad_avg_func(short *stencil[4],

float *out,
size_t elements)

{
int k;
for(k = 0; k < elements; k++) {

out[k] = (float)((stencil[0][k] +
stencil[1][k] +
stencil[2][k] +
stencil[3][k]) / 4.0);

}
return 0;

}

Figure 7: CoRTAD Average Function

The next step addressed performance of the analysis

algorithms on larger scale datasets which required a larger

number of cores. This second stage performance evaluation

took place on the Cori supercomputer at the National Energy

Research Scientific Computing Center (NERSC), which is a

Cray XC40 supercomputer with 1630 Intel Xeon Haswell

nodes. Each node consists of 32 cores and 128GB of

memory.

PDC is a client-server system which can be deployed

in two slightly different configurations. A shared mode
configuration, has one PDC server per node, which uti-

lizes single core, leaving the remaining 31 cores for user

application execution. A dedicated mode where the PDC

servers and user’s application are on separate nodes. All

PDC analysis experiments were run using the shared mode

configuration. The advantage of this decision for analysis

and transforms is that communications between co-located

clients and server takes place via shared memory. Addi-

tionally, the Server is typically configured to utilize multi-

threading. This should result in a performance advantage

over the non-multi-threaded approach since computational

tasks can be offloaded to dedicated threads for completion.

Though PDC utilizes srun to launch parallel application

instances, it does not generally use MPI for communication.

Instead, we relied on the Mercury [12] RPC library, an

HPC-optimized C library for Remote Procedure Calls, as

the communication mechanism. In our experiments, we

configured Mercury to utilize the communication protocols

of the libfabric [14] plugin with TCP. Other options such

as Cray GNI are available but were not used in these

experiments.

V. PERFORMANCE EVALUATION

Though we utilized ArrayUDF as a baseline to validate

the PDC ability to address scientific data analysis, our

performance report is intended to show that we believe

PDC is currently able to achieve an acceptable level of

performance while adding a significant level of new func-

tionality with the incorporation of in locus computation.

These new capabilities can provide valuable insight into the

potential benefits of intelligent storage devices as computer

architecture evolves in this new direction.

ArrayUDF [7] reported performance comparisons of their

implementation against SciDB [15], RasDaMan [16], and

Spark [17] on several common science applications:

• Moving average based smoothing for a time series.

• Vorticity computation

• Peak detection

• Trilinear interpolation

Rather than reiterating those ArrayUDF comparisons,

we took the opportunity to re-implement most of these

benchmark codes in PDC. In all cases, PDC has been able to

meet or exceed the observed performance of the ArrayUDF

examples. Previously mentioned and shown as an example in

figures 6 and 7, the CoRTAD example is a moving average

based smoothing application.

Figure 8: Performance of CoRTAD

Figure 9: Performance of S3D: A 3 point stencil
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Figure 10: Performance of OpenMSI: A 6 point stencil

The S3D test (vorticity computation) is a three point

stencil code and is programmed similarly to the CoRTAD

example shown previously in figures 6 and 7. The fact

that S3D was the simplest code and exhibits the best

cache behavior of all the test examples, allows the PDC

implementation to significantly outperform the arrayUDF

implementation (see figure 9).

The most complex test in the collection that we used for

performance comparisons is the MSI application. This is the

core code of a Laplacian calculator and is programmed as a 6

point stencil. The complexity is derived from the necessity to

detect and manage edge conditions for the five surrounding

points of the stencil calculation and the overall performance

relative to ArrayUDF is the smallest that we observed (see

figure 10).

For purposes of leveling the performance comparisons as

seen in Figures 8, 9, and 10, we utilized the reported average
UDF times running on the same number of cores.

Our PDC experiments rely on programming in HDF5 to

read datasets and to utilize the scaleout capabilities of the

parallel HDF5 library to reduce the local memory footprint

on each PDC client process.

A. Explaining the Analysis Performance

It is worth stating once again, that unlike PDC which

utilizes object mapping to invoke the in situ analysis auto-

matically on a server (in this case) as a result of a buffer map

operation, the ArrayUDF system provides a parallel pro-

gramming approach for HPC which addresses the analysis

of data with a strong focus on ease of programming. Timings

for the PDC analysis are provided by timing the actual code

that runs on the PDC server. At the point where a PDC anal-

ysis function is invoked, data is already local to the server

and the execution thread or process (depending on how the

server is configured) is exactly similar to ArrayUDF or any

other computing engine. The actual performance differences

between PDC and ArrayUDF are partially explained by

the different computational approaches. The ArrayUDF C++

framework provides users with structural locality and ease of

use through a C++ Array class and the Apply method which

implements Stencil and other analysis optimizations such

as data Chunking to minimize memory consumption when

working on large scientific data sets.. This approach is quite

nice, but comes at the overhead cost of imposing method

calls to implement the relative indexing for each element

access in the stencil computations. In comparison, PDC

appears to benefit significantly from having relatively high

cache locality and straight-forward direct element access via

caching and/or compiler vectorization within the analysis

loops. Much work remains to be accomplished however. In

particular, there is a need for PDC to implement additional

APIs to allow more flexible input and output arguments both

in number and iterator types.

B. Performance Choices using PDC Transforms

As previously described in section III-A, we introduced

specific PDC APIs which give users some flexibility with

regards to when and where transformations should take

place. The more general thought behind transforms however,

is that many such actions can be undertaken automatically

by the data management system.

A simple type casting experiment was created to test the

impact on the perceived performance of the operation as

observed by the client. The experiment consists of mapping

parallel client regions containing a range of 1 to 32 Mega

elements (225) of double precision data per client to a target

region of similar shape per slice but defined as containing

32 bit integers.

Once the PDC data consistency operation (region lock

release) completes for the mapped target, the region buffer

will contain the transformed double precision data of the

source into 32 bit integers in the target. The summary

of release times shown in Table I reflect the sum of the

transform execution time plus the data transfer time and lock

release as measured by the client.

Intellectually, this experiment is similar to the one men-

tioned previously involving the BLOSC compression library.

If the type conversion takes place on the client as part of

the mapping operation between client and server, we might

expect that since the data size to be transferred is reduced by

a factor of 2, that the overall performance will be optimal.

By changing the selection of the relative location in the

transform registration in a subsequent test, i.e. to DATA IN,

to specify that the type conversion operation will be run on

a server, we attempt to validate our expected results.

The observed performance shown in Table I validates our

initial expectations, i.e. that the client based transform for

this example should always outperform the server based

version. The third column shows the best case scenario,

i.e. there is a dedicated server per client and thus there

should never be any resource contentions to negatively

affect performance. In contrast, the fourth column of the

table captures the region release times for a shared server
which provides services to 31 clients. The performance

differences are quite evident and are due to the apparent

over-subscription scenario in which each of the 31 near
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Size/proc Locus Release time* Release time**
1 MB Client 3.89ms 117.65ms

Server 18.56ms 411.30ms
4 MB Client 22.27ms 250.60ms

Server 27.07ms 476.44ms

16 MB2 Client 47.82ms 173.55ms
Server 63.19ms 167.15ms

32 MB2 Client 95.35ms 304.84ms
Server 120.02ms 396.50ms

Table I: Region release times for mapped arrays with Trans-

forms enabled. Release time(*) refers to a single client per

server. Release time(**) column shows the multi-threaded

shared Server results per 31 clients. The 16 and 32 MB

element timing entries were run with the 31 clients but these

are distributed over 2 nodes with two servers, effectively

removing the dynamic over-subscription scenario during

server based transforms.

simultaneous client requests are handled by 31 server threads

which run more or less in competition with the clients.

The 16MB and 32MB array element entries in the table

show a server configuration that is slightly different than

that used with the 1MB and 4MB experiment. In these final

two experiments, there are two (2) servers per 31 clients

and these are split more or less equally over two nodes. The

forth column reflects the improvement in the server response

time for this configuration (note the 16MB entries vs. those

of the 4MB experiment).

Size/proc Locus Best Case* Shared Servers**
1 MB Client 1 30.24

Server 4.77 22.16
4 MB Client 1 11.25

Server 1.21 17.60

16 MB2 Client 1 3.62
Server 1.32 2.64

32 MB2 Client 1 3.19
Server 1.25 3.30

Table II: Region release times expressed as ratios. Best

Case(*) ratios are measured relative to client based trans-

forms and a dedicated server. Shared Servers(**) column

shows the multi-threaded shared Server results per 31 clients.

For applications which might require heavy utilization of

transforms (or in locus analysis), a suggested approach might

be to reduce the dynamic over-subscription that we describe

above, by allocating fewer clients per PDC server. Table II

shows the dynamic oversubscription effects of the shared

server configuration under a worst case scenario, e.g. all 31

clients are requesting the services of a single multi-threaded

server. As in the Table I, the 16MB and 32 MB entries in

Shared Servers column reflect the improved performance of

halving the server load by adding an additional server to the

PDC configuration.

VI. RELATED WORK

Existing in situ infrastructures (e.g., ADIOS [6], ParaView

Catalyst [18], VisIt Libsim [19], SENSEI [20], and As-

cent [21]) provide APIs to allow Python to be employed

as an Analysis engine. Through an embedded Python in-

terpreter, users have access to a plethora of pre-packaged

analysis tools and in most cases these will have direct access

to simulation data. What is typically missing however, is the

ability to relocate those analysis functions automatically and

repeatedly as data moves through an analysis pipeline.

ALPINE [22] is another in situ infrastructure that grew

out of an earlier effort called Strawman [23], and focuses

for the most part on visualization tasks. It relies on Conduit
and a parallel hybrid version of VTK-m [24] called VTK-

h. It is tightly coupled with the Ascent [25] runtime that

provides a convenient visualization programming feature

called Pipelines. This construct allows explicit collections of

filters to be constructed, managed, and applied to create data

visualization Scenes and Extracts. This approximates the

workings of PDC transforms and in locus analysis functions.

In PDC, however, the functional abstractions of Scenes,

Extracts, and Pipelines would be replaced by PDC Objects

and Regions, which are managed automatically by the PDC

runtime.

DataSpaces [3] addresses the problems of data movement

within large scale scientific simulations. In particular, there

is an attempt to utilize an in situ analysis approach to address

the increasing performance gap between simulations which

can produce data at rates that outstrip the storage system

capability to store those results.

Glean [26] adds topology awareness and IO acceleration

in addition to the in situ analysis framework in an attempt

to address the growing issue of simulation data production

vs. IO capacity.

Flexpath [4] messaging implements parallel pipelines and

active messages as yet another tool to provide an efficient

staging context for analytics and visualization in the current

and next generation HPC computing environments.

Lastly, we mention once again the ArrayUDF [7] frame-

work, which figured prominently in the PDC analysis design.

This framework has focused primarily on the ease of pro-

gramming parallel codes for post-processing data analysis.

VII. CONCLUSIONS AND FUTURE WORK

As emerging high-performance computing (HPC) systems

get deployed with an unprecedented level of complexity

due to a deep system memory and a storage hierarchy

with integrated processing, there will be an ever increasing

requirement to provide software tools which give users

access to this distributed intelligence. In locus execution will

introduce many opportunities for significant performance

boosts for improving big data operations. It accomplishes

this by adding computation capabilities at various points
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while data is moving through the system. Ultimately this ap-

proach reduces the total amount of communication required

to achieve some of the important tasks such as data indexing

or querying. Despite these clear benefits, in locus processing

is not commonly available.

We have demonstrated in this paper that Proactive Data

Containers (PDCs) provides the necessary infrastructure to

enable high performance data analysis solutions for current

and next generation HPC systems. The use of dynamically

loaded functions from shared libraries or application exe-

cutables is an efficient approach which enables the runtime

relocation of functions by PDC to a processor which is

physically close the data of interest. Rather than rely on

pre-packaged functionality, PDC instead allows user-defined

functions to be specified via a flexible programming API.

The PDC runtime then loads and executes the specified

function either as a transform or analysis function as a

result of data mapping operations. This offers unprecedented

functionality and because basic operation entry-points are

written in ’C’, the performance has been shown to be

excellent. PDC is actually achieving superior performance

in all experiments which we have run to date.

The PDC framework will continue to expand upon the

already defined capabilities and look to include pre-defined

transforms which can automatically be invoked by the PDC

runtime. The primary focus will likely be an expansion of

the PDC data analysis capabilities in two major categories

of Data augmentation: Index generation; and Data Analysis

(e.g. Data Max, Data Min, etc). Lastly, we expect to further

improve the number of arguments and Data iterator types

which can be utilized when calling PDC analysis functions.
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